Encoding Functions
char
Returns the string with the length as the number of passed arguments and each byte has the value of corresponding argument. Accepts multiple arguments of numeric types. If the value of argument is out of range of UInt8 data type, it is converted to UInt8 with possible rounding and overflow.
Syntax
char(number_1, [number_2, ..., number_n]);
Arguments
Returned value
- a string of given bytes. String.
Example
Query:
SELECT char(104.1, 101, 108.9, 108.9, 111) AS hello;
Result:
┌─hello─┐
│ hello │
└───────┘
You can construct a string of arbitrary encoding by passing the corresponding bytes. Here is example for UTF-8:
Query:
SELECT char(0xD0, 0xBF, 0xD1, 0x80, 0xD0, 0xB8, 0xD0, 0xB2, 0xD0, 0xB5, 0xD1, 0x82) AS hello;
Result:
┌─hello──┐
│ привет │
└────────┘
Query:
SELECT char(0xE4, 0xBD, 0xA0, 0xE5, 0xA5, 0xBD) AS hello;
Result:
┌─hello─┐
│ 你好 │
└───────┘
hex
Returns a string containing the argument’s hexadecimal representation.
Alias: HEX
.
Syntax
hex(arg)
The function is using uppercase letters A-F
and not using any prefixes (like 0x
) or suffixes (like h
).
For integer arguments, it prints hex digits (“nibbles”) from the most significant to least significant (big-endian or “human-readable” order). It starts with the most significant non-zero byte (leading zero bytes are omitted) but always prints both digits of every byte even if the leading digit is zero.
Values of type Date and DateTime are formatted as corresponding integers (the number of days since Epoch for Date and the value of Unix Timestamp for DateTime).
For String and FixedString, all bytes are simply encoded as two hexadecimal numbers. Zero bytes are not omitted.
Values of Float and Decimal types are encoded as their representation in memory. As we support little-endian architecture, they are encoded in little-endian. Zero leading/trailing bytes are not omitted.
Values of UUID type are encoded as big-endian order string.
Arguments
Returned value
- A string with the hexadecimal representation of the argument. String.
Examples
Query:
SELECT hex(1);
Result:
01
Query:
SELECT hex(toFloat32(number)) AS hex_presentation FROM numbers(15, 2);
Result:
┌─hex_presentation─┐
│ 00007041 │
│ 00008041 │
└──────────────────┘
Query:
SELECT hex(toFloat64(number)) AS hex_presentation FROM numbers(15, 2);
Result:
┌─hex_presentation─┐
│ 0000000000002E40 │
│ 0000000000003040 │
└──────────────────┘
Query:
SELECT lower(hex(toUUID('61f0c404-5cb3-11e7-907b-a6006ad3dba0'))) as uuid_hex
Result:
┌─uuid_hex─────────────────────────┐
│ 61f0c4045cb311e7907ba6006ad3dba0 │
└──────────────────────────────────┘
unhex
Performs the opposite operation of hex. It interprets each pair of hexadecimal digits (in the argument) as a number and converts it to the byte represented by the number. The return value is a binary string (BLOB).
If you want to convert the result to a number, you can use the reverse and reinterpretAs<Type> functions.
If unhex
is invoked from within the clickhouse-client
, binary strings display using UTF-8.
Alias: UNHEX
.
Syntax
unhex(arg)
Arguments
arg
— A string containing any number of hexadecimal digits. String, FixedString.
Supports both uppercase and lowercase letters A-F
. The number of hexadecimal digits does not have to be even. If it is odd, the last digit is interpreted as the least significant half of the 00-0F
byte. If the argument string contains anything other than hexadecimal digits, some implementation-defined result is returned (an exception isn’t thrown). For a numeric argument the inverse of hex(N) is not performed by unhex().
Returned value
- A binary string (BLOB). String.
Example
Query:
SELECT unhex('303132'), UNHEX('4D7953514C');
Result:
┌─unhex('303132')─┬─unhex('4D7953514C')─┐
│ 012 │ MySQL │
└─────────────────┴─────────────────────┘
Query:
SELECT reinterpretAsUInt64(reverse(unhex('FFF'))) AS num;
Result:
┌──num─┐
│ 4095 │
└──────┘
bin
Returns a string containing the argument’s binary representation.
Syntax
bin(arg)
Alias: BIN
.
For integer arguments, it prints bin digits from the most significant to least significant (big-endian or “human-readable” order). It starts with the most significant non-zero byte (leading zero bytes are omitted) but always prints eight digits of every byte if the leading digit is zero.
Values of type Date and DateTime are formatted as corresponding integers (the number of days since Epoch for Date
and the value of Unix Timestamp for DateTime
).
For String and FixedString, all bytes are simply encoded as eight binary numbers. Zero bytes are not omitted.
Values of Float and Decimal types are encoded as their representation in memory. As we support little-endian architecture, they are encoded in little-endian. Zero leading/trailing bytes are not omitted.
Values of UUID type are encoded as big-endian order string.
Arguments
Returned value
- A string with the binary representation of the argument. String.
Examples
Query:
SELECT bin(14);
Result:
┌─bin(14)──┐
│ 00001110 │
└──────────┘
Query:
SELECT bin(toFloat32(number)) AS bin_presentation FROM numbers(15, 2);
Result:
┌─bin_presentation─────────────────┐
│ 00000000000000000111000001000001 │
│ 00000000000000001000000001000001 │
└──────────────────────────────────┘
Query:
SELECT bin(toFloat64(number)) AS bin_presentation FROM numbers(15, 2);
Result:
┌─bin_presentation─────────────────────────────────────────────────┐
│ 0000000000000000000000000000000000000000000000000010111001000000 │
│ 0000000000000000000000000000000000000000000000000011000001000000 │
└──────────────────────────────────────────────────────────────────┘
Query:
SELECT bin(toUUID('61f0c404-5cb3-11e7-907b-a6006ad3dba0')) as bin_uuid
Result:
┌─bin_uuid─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ 01100001111100001100010000000100010111001011001100010001111001111001000001111011101001100000000001101010110100111101101110100000 │
└──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
unbin
Interprets each pair of binary digits (in the argument) as a number and converts it to the byte represented by the number. The functions performs the opposite operation to bin.
Syntax
unbin(arg)
Alias: UNBIN
.
For a numeric argument unbin()
does not return the inverse of bin()
. If you want to convert the result to a number, you can use the reverse and reinterpretAs<Type> functions.
If unbin
is invoked from within the clickhouse-client
, binary strings are displayed using UTF-8.
Supports binary digits 0
and 1
. The number of binary digits does not have to be multiples of eight. If the argument string contains anything other than binary digits, some implementation-defined result is returned (an exception isn’t thrown).
Arguments
arg
— A string containing any number of binary digits. String.
Returned value
- A binary string (BLOB). String.
Examples
Query:
SELECT UNBIN('001100000011000100110010'), UNBIN('0100110101111001010100110101000101001100');
Result:
┌─unbin('001100000011000100110010')─┬─unbin('0100110101111001010100110101000101001100')─┐
│ 012 │ MySQL │
└───────────────────────────────────┴───────────────────────────────────────────────────┘
Query:
SELECT reinterpretAsUInt64(reverse(unbin('1110'))) AS num;
Result:
┌─num─┐
│ 14 │
└─────┘
bitmaskToList(num)
Accepts an integer. Returns a string containing the list of powers of two that total the source number when summed. They are comma-separated without spaces in text format, in ascending order.
bitmaskToArray(num)
Accepts an integer. Returns an array of UInt64 numbers containing the list of powers of two that total the source number when summed. Numbers in the array are in ascending order.
bitPositionsToArray(num)
Accepts an integer and converts it to an unsigned integer. Returns an array of UInt64
numbers containing the list of positions of bits of arg
that equal 1
, in ascending order.
Syntax
bitPositionsToArray(arg)
Arguments
arg
— Integer value. Int/UInt.
Returned value
Example
Query:
SELECT bitPositionsToArray(toInt8(1)) AS bit_positions;
Result:
┌─bit_positions─┐
│ [0] │
└───────────────┘
Query:
SELECT bitPositionsToArray(toInt8(-1)) AS bit_positions;
Result:
┌─bit_positions─────┐
│ [0,1,2,3,4,5,6,7] │
└───────────────────┘
mortonEncode
Calculates the Morton encoding (ZCurve) for a list of unsigned integers.
The function has two modes of operation:
- Simple
- Expanded
Simple mode
Accepts up to 8 unsigned integers as arguments and produces a UInt64 code.
Syntax
mortonEncode(args)
Parameters
args
: up to 8 unsigned integers or columns of the aforementioned type.
Returned value
- A UInt64 code. UInt64
Example
Query:
SELECT mortonEncode(1, 2, 3);
Result:
53
Expanded mode
Accepts a range mask (tuple) as a first argument and up to 8 unsigned integers as other arguments.
Each number in the mask configures the amount of range expansion:
1 - no expansion
2 - 2x expansion
3 - 3x expansion
...
Up to 8x expansion.
Syntax
mortonEncode(range_mask, args)
Parameters
range_mask
: 1-8.args
: up to 8 unsigned integers or columns of the aforementioned type.
Note: when using columns for args
the provided range_mask
tuple should still be a constant.
Returned value
- A UInt64 code. UInt64
Example
Range expansion can be beneficial when you need a similar distribution for arguments with wildly different ranges (or cardinality) For example: 'IP Address' (0...FFFFFFFF) and 'Country code' (0...FF).
Query:
SELECT mortonEncode((1,2), 1024, 16);
Result:
1572864
Note: tuple size must be equal to the number of the other arguments.
Example
Morton encoding for one argument is always the argument itself:
Query:
SELECT mortonEncode(1);
Result:
1
Example
It is also possible to expand one argument too:
Query:
SELECT mortonEncode(tuple(2), 128);
Result:
32768
Example
You can also use column names in the function.
Query:
First create the table and insert some data.
create table morton_numbers(
n1 UInt32,
n2 UInt32,
n3 UInt16,
n4 UInt16,
n5 UInt8,
n6 UInt8,
n7 UInt8,
n8 UInt8
)
Engine=MergeTree()
ORDER BY n1 SETTINGS index_granularity = 8192, index_granularity_bytes = '10Mi';
insert into morton_numbers (*) values(1,2,3,4,5,6,7,8);
Use column names instead of constants as function arguments to mortonEncode
Query:
SELECT mortonEncode(n1, n2, n3, n4, n5, n6, n7, n8) FROM morton_numbers;
Result:
2155374165
implementation details
Please note that you can fit only so many bits of information into Morton code as UInt64 has. Two arguments will have a range of maximum 2^32 (64/2) each, three arguments a range of max 2^21 (64/3) each and so on. All overflow will be clamped to zero.
mortonDecode
Decodes a Morton encoding (ZCurve) into the corresponding unsigned integer tuple.
As with the mortonEncode
function, this function has two modes of operation:
- Simple
- Expanded
Simple mode
Accepts a resulting tuple size as the first argument and the code as the second argument.
Syntax
mortonDecode(tuple_size, code)
Parameters
tuple_size
: integer value no more than 8.code
: UInt64 code.
Returned value
Example
Query:
SELECT mortonDecode(3, 53);
Result:
["1","2","3"]
Expanded mode
Accepts a range mask (tuple) as a first argument and the code as the second argument.
Each number in the mask configures the amount of range shrink:
1 - no shrink
2 - 2x shrink
3 - 3x shrink
...
Up to 8x shrink.
Range expansion can be beneficial when you need a similar distribution for arguments with wildly different ranges (or cardinality) For example: 'IP Address' (0...FFFFFFFF) and 'Country code' (0...FF). As with the encode function, this is limited to 8 numbers at most.
Example
Query:
SELECT mortonDecode(1, 1);
Result:
["1"]
Example
It is also possible to shrink one argument:
Query:
SELECT mortonDecode(tuple(2), 32768);
Result:
["128"]
Example
You can also use column names in the function.
First create the table and insert some data.
Query:
create table morton_numbers(
n1 UInt32,
n2 UInt32,
n3 UInt16,
n4 UInt16,
n5 UInt8,
n6 UInt8,
n7 UInt8,
n8 UInt8
)
Engine=MergeTree()
ORDER BY n1 SETTINGS index_granularity = 8192, index_granularity_bytes = '10Mi';
insert into morton_numbers (*) values(1,2,3,4,5,6,7,8);
Use column names instead of constants as function arguments to mortonDecode
Query:
select untuple(mortonDecode(8, mortonEncode(n1, n2, n3, n4, n5, n6, n7, n8))) from morton_numbers;
Result:
1 2 3 4 5 6 7 8
hilbertEncode
Calculates code for Hilbert Curve for a list of unsigned integers.
The function has two modes of operation:
- Simple
- Expanded
Simple mode
Simple: accepts up to 2 unsigned integers as arguments and produces a UInt64 code.
Syntax
hilbertEncode(args)
Parameters
args
: up to 2 unsigned integers or columns of the aforementioned type.
Returned value
- A UInt64 code
Type: UInt64
Example
Query:
SELECT hilbertEncode(3, 4);
Result:
31
Expanded mode
Accepts a range mask (tuple) as a first argument and up to 2 unsigned integers as other arguments.
Each number in the mask configures the number of bits by which the corresponding argument will be shifted left, effectively scaling the argument within its range.
Syntax
hilbertEncode(range_mask, args)
Parameters
range_mask
: (tuple)args
: up to 2 unsigned integers or columns of the aforementioned type.
Note: when using columns for args
the provided range_mask
tuple should still be a constant.
Returned value
- A UInt64 code
Type: UInt64
Example
Range expansion can be beneficial when you need a similar distribution for arguments with wildly different ranges (or cardinality) For example: 'IP Address' (0...FFFFFFFF) and 'Country code' (0...FF).
Query:
SELECT hilbertEncode((10,6), 1024, 16);
Result:
4031541586602
Note: tuple size must be equal to the number of the other arguments.
Example
For a single argument without a tuple, the function returns the argument itself as the Hilbert index, since no dimensional mapping is needed.
Query:
SELECT hilbertEncode(1);
Result:
1
Example
If a single argument is provided with a tuple specifying bit shifts, the function shifts the argument left by the specified number of bits.
Query:
SELECT hilbertEncode(tuple(2), 128);
Result:
512
Example
The function also accepts columns as arguments:
Query:
First create the table and insert some data.
create table hilbert_numbers(
n1 UInt32,
n2 UInt32
)
Engine=MergeTree()
ORDER BY n1 SETTINGS index_granularity = 8192, index_granularity_bytes = '10Mi';
insert into hilbert_numbers (*) values(1,2);
Use column names instead of constants as function arguments to hilbertEncode
Query:
SELECT hilbertEncode(n1, n2) FROM hilbert_numbers;
Result:
13
implementation details
Please note that you can fit only so many bits of information into Hilbert code as UInt64 has. Two arguments will have a range of maximum 2^32 (64/2) each. All overflow will be clamped to zero.
hilbertDecode
Decodes a Hilbert curve index back into a tuple of unsigned integers, representing coordinates in multi-dimensional space.
As with the hilbertEncode
function, this function has two modes of operation:
- Simple
- Expanded
Simple mode
Accepts up to 2 unsigned integers as arguments and produces a UInt64 code.
Syntax
hilbertDecode(tuple_size, code)
Parameters
tuple_size
: integer value no more than 2.code
: UInt64 code.
Returned value
- tuple of the specified size.
Type: UInt64
Example
Query:
SELECT hilbertDecode(2, 31);
Result:
["3", "4"]
Expanded mode
Accepts a range mask (tuple) as a first argument and up to 2 unsigned integers as other arguments. Each number in the mask configures the number of bits by which the corresponding argument will be shifted left, effectively scaling the argument within its range.
Range expansion can be beneficial when you need a similar distribution for arguments with wildly different ranges (or cardinality) For example: 'IP Address' (0...FFFFFFFF) and 'Country code' (0...FF). As with the encode function, this is limited to 8 numbers at most.
Example
Hilbert code for one argument is always the argument itself (as a tuple).
Query:
SELECT hilbertDecode(1, 1);
Result:
["1"]
Example
A single argument with a tuple specifying bit shifts will be right-shifted accordingly.
Query:
SELECT hilbertDecode(tuple(2), 32768);
Result:
["128"]
Example
The function accepts a column of codes as a second argument:
First create the table and insert some data.
Query:
create table hilbert_numbers(
n1 UInt32,
n2 UInt32
)
Engine=MergeTree()
ORDER BY n1 SETTINGS index_granularity = 8192, index_granularity_bytes = '10Mi';
insert into hilbert_numbers (*) values(1,2);
Use column names instead of constants as function arguments to hilbertDecode
Query:
select untuple(hilbertDecode(2, hilbertEncode(n1, n2))) from hilbert_numbers;
Result:
1 2